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Bag of Sampled Words: A Sampling-based Strategy for Fast and Accurate
Visual Place Recognition in Changing Environments
Sang Jun Lee and Sung Soo Hwang*

Abstract: In the field of visual place recognition, a variety of methods using Visual Bag of Words has been sug-
gested to cope with environmental change. This paper presents a sampling-based method which improves the speed
and the accuracy of the existing Visual Bag of Words models. We first propose sampling of image features consid-
ering their density to speed up the quantization step. By using samples, a more accurate but rather slow ranking
procedure is feasible. Thus, we also propose a ranking procedure which utilizes spatial information of samples.
Lastly, a coarse and fine approach-based refinement method is proposed which increases the accuracy of the system
by iteratively updating the similarity between images. The experimental results show that the proposed method
improves the performance of the existing Visual Bag of Words models in terms of speed and accuracy.
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1. INTRODUCTION

Visual-based place recognition, which started from im-
age retrieval, has been studied for navigation and localiza-
tion of robots in Simultaneously Localization And Map-
ping (SLAM) system. Several methods were based on
Bag-of-Visual-Words (BoW) model [1, 2]. Other meth-
ods tried to use binary features to increase speed [3,4], and
some suggested special data structures to build a codebook
more efficiently [5–11]. A relaxed BoW model in terms of
quantization, called soft assignment, was also suggested
in [12]. Some method tried to rank the similar images us-
ing PCA in [13]. Some methods tried to use multi-feature
detectors and descriptors [14] or another representation,
called VLAD [15, 16] and Fisher Vector [17] to exploit
the information of orientation of the vector quantized.

The applications using SLAM system are usually faced
with changes in lighting, seasons, occlusion, and appear-
ance. Hence, visual-based place recognition should be ro-
bust to those changes. Up to now, there have been the at-
tempts to integrate several kinds of features to improve the
accuracy of place recognition with environmental change
[14,18,19]. They generate a robust BoW model by i) gen-
erating virtual views of a query image, and ii) extracting
various kinds of features from these images. However,
the computational cost of this method is too expensive,
especially in quantizing the extracted features into BoW
representation. It is caused by the fact that it normally ex-
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tracts too much features from images. This can be a big
disadvantage to be used in practical applications.

In this paper, we propose a novel method which can
improve the existing BoW models in terms of speed and
accuracy. Similar to previous approaches, the proposed
method also generates virtual views to handle viewpoint
changes, and extracts features by feature detectors and de-
scriptors designed to be illumination-invariant. The main
differences between the proposed method and the existing
methods are as follows. First, we speed up the system by
utilizing sampled features only instead of utilizing all ex-
tracted features. We present two kinds of sampling meth-
ods and compare the performance of the system depending
on the sampling methods. One may argue that the accu-
racy of the proposed system can be degraded because only
some of features are used. We overcome the degradation
of the system by introducing a novel ranking procedure.
Compared to other methods using TF-IDF [7], it uses spa-
tial information, which produces results that are more ac-
curate. It utilizes geometric verification, which examines
the relation of two views in terms of epipolar geometry.
The proposed ranking procedure is slower than the con-
ventional ranking procedure. However, since we use sam-
ples of features for place recognition, the total speed of the
system is not declined. Furthermore, we improve the ac-
curacy of the system by utilizing the proposed refinement
method. It iteratively updates the probability distribution
of ranking list. Assuming that the target images are se-
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quentially captured from any vehicles, each iteration
makes the target image to have higher probability by
weighting the adjacent images. This method is done fast
because the updating is only performed in ranking list.

In summary, the contributions of this paper are: i) uti-
lization of sampled features for place recognition and two
ways of feature sampling, ii) direct scoring of feature sim-
ilarity by geometric verification, and iii) fast and itera-
tive similarity refinement. By combining aforementioned
three features, the proposed system can improve the exist-
ing BoW models in terms of speed and accuracy. Since the
proposed method is based on BoW, yet utilizes sampled
features, we name the proposed method Bag of Sampled
Words(BoSW).

This paper discusses related work in Section 2, and the
detailed description of the above method in Section 3. We
report our study of parameters and compare the perfor-
mance with the existing method in Section 4. In Section
5, we discuss the conclusions.

2. RELATED WORK

2.1. Bag of words
BoW is one of the models for image retrieval, and BoW

generation process can be divided into an off-line stage,
an on-line stage, and a searching stage [1]. In the off-line
stage, many features are extracted from each of images
in the database. The extracted features of each image are
then represented as a vector through the quantization pro-
cess. The quantization process assigns the nearest index
of a visual vocabulary to each feature. The on-line stage
performs the same way for a query image. In the searching
stage, the similarity between the representation of a vector
of a query image and the representation of a vector of each
of images in database is calculated as a score. Each scores
is ranked to Top-N images, where the user assigns the N.

The visual vocabularies are learned by k-means [7]
which is an unsupervised learning method. The hierarchi-
cal k-means (HKM) [6] was proposed to reduce the com-
putational complexity. Approximate k-means (AKM) [5]
uses a randomized k-d tree instead of using HKM to speed
up with an approximate nearest neighbor search. For the
quantization, previous methods usually use the k-d tree
structure [8] for fast search. Best-bin-first modification
[11] and randomized k-d forest [9, 10] are suggested to
reduce the time complexity. The representation of a vec-
tor is converted to an inverted index file format [1, 20].
TF-IDF [7] scoring method is used to score the similar-
ity. However, since the spatial information is lost in this
score, re-ranking procedure using spatial information after
ranking procedure is suggested in [5].

2.2. Feature extraction
Various types of handcraft features can be used for Bag

of words model. The types can be divided into two cate-

gories as local feature descriptors, and global feature de-
scriptors [2]. The local feature descriptors first detect the
local features and describe each feature point, while global
feature descriptors describe whole image. Bag of words
model is based on the utilization of local feature descrip-
tors.

Mishkin et al. has compared in [19] the local feature
detectors for matching in extreme situations such as large
baseline movement, illumination change, appearance, and
occlusion. They reported that MSER [21] and Hessian-
Affine [22] multiple feature detectors have the best per-
formance for matching of image pairs. As for descriptor,
[18] reported that the use of Root-SIFT (R-SIFT) and Half
Root-SIFT (HR-SIFT) as multiple descriptors has the best
performance for extreme situations.

Features detected by the handcraft method have disad-
vantages that they cannot utilize the semantic information
of the image. Therefore, learning based feature extrac-
tor is possible as suggested in [23]. However, since the
learning-based feature detectors require query images as
training data to increase the accuracy, it cannot always de-
fine or list up the images for retrieval in advance.

2.3. Previous place recognition methods
In SLAM, BoW is widely used for localization [24].

There are several BoW methods such as DBoW [3] in
ORB-SLAM [25] and G-SLAM [26], and FABMAP [4] in
LSD-SLAM [27]. They use binary descriptors, i.e., ORB
[28] and SURF [29], which can speed up the system for
the real-time operation. These two methods have been
proven to be performed well with high accuracy. How-
ever, in practice, place recognition methods using these
features do not work well between images with different
illuminations and with wide viewpoint change.

To address several changing environments, Mishkin et
al. [14] suggested a method called Wide Baseline Stereo
Generalization + BoW (i.e., WxBS+BoW). This method
generates synthesis views of a query image for viewpoint-
invariant image matching and extracts a lot of features
from those images. This method outperforms the previous
BoW models in terms of accuracy on challenging environ-
ments [30]. However, the computational cost is too expen-
sive because this method requires big vocabularies (four
1M vocabularies), and the quantization step spends too
many time to search the nearest neighbor in large vocab-
ularies. Moreover, because the geometric verification is
performed by using RANSAC-like method [31], the speed
is too degraded.

Currently, VLAD-based place recognition method
[16] is proposed as lightweight and viewpoint-invariant
method. The VLAD used in this method aggregates fea-
tures that have same position by BoW model, and in-
creases performance by exhaustive feature matching ap-
proach, and reduces the dimension of the representation
by data-independent dimensionality reduction. However,
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Fig. 1. System overview of the proposed bag of sampled words model.

this method has shown a trade-off between computation
time and performance.

3. METHOD

3.1. System overview
The overview of the proposed BoSW is shown in Fig. 1.

Similar to the conventional BoW model, the system is di-
vidied into an offline stage and an online stage. In the
offline stage, the quantization step is performed for each
of images in database. Each image generates synthesized
views and extracts features for all these views. These
features are quantized to represent a vector of each im-
age by finding the closest vocabulary from a code book.
The code book is pre-trained by using same feature de-
scriptors. The quantized features are indexed by using in-
verted file format. In the online stage, syntheses views are
generated, and features are extracted similar to the offline
stage. However, unlike the offline stage, features sampled
by the proposed sampling method are quantized and in-
dexed rather than using whole features.

In the matching stage, a query image is matched with
each image in database. Each match calculates a simi-
larity using geometric verification, and images are ranked
according to the proposed similarity measure. Then, the
proposed refinement method updates the distribution of
the similarity with fast and iterative refinement and re-rank
the similarities. Finally, the top image in the ranking list
is detected as the final image.

3.2. Synthesis view generation
As suggested in [32], we generate synthesized views for

all images from database as well as query images. For the
comprehension of this paper, we will briefly explain how
to generate synthesizes views.

An image can be transformed into parameterized ho-
mography transformation. An affine transformation ma-
trix A can parameterize the homography transformation
by first order Taylor expansion [19]. This A can be de-
composed by Singular Value Decomposition (SVD) as

follows:

A =Hλ R1(ψ)TtR2(ϕ)

=λ
(

cosψ −sinψ
sinψ cosψ

)(
t 0
0 1

)(
cosϕ −sinϕ
sinϕ cosϕ

)
,

(1)

where λ > 0, R1(·) and R2(·) are rotation matrices, and Tt

is a diagonal matrix with t > 1. As t is an absolute tilt, the
latitude is arccos(1/t). ϕ is the longitude, and ψ is the ro-
tation of the camera about the optical axis. Assuming that
ψ is fixed to the gravity assumption, the parameterization
is t and ϕ , and optionally scale factor. Then, the synthe-
sized view generation process is performed in Gaussian
scale-space by convolution of a Gaussian filter multiplied
by a down sampling factor s, rotated by t and ϕ .

3.3. Feature extraction
As mentioned in Section 2, the combination of MSER

and Hessian-Affine was reported as the best feature detec-
tors in challenging situations. While MSER is the robust
feature detector at the appearance of the many structured
objects such as building [21], Hessian-Affine is relatively
robust to nature scenes [22]. It means that the Hessian-
Affine tends to extract features in the nature scene. How-
ever, extracting features from the nature scene must be
avoided because the nature scene itself is prone to be
changed. Moreover, since the trees will change their
colour and size as they grow up, they may give defects
at long term matching. It is also difficult to match the
prominent images for place recognition because they have
high frequency features that are repeated in same pattern.
Therefore, we assume that at least one building or object
should be existed in the scene for place recognition. And
according to this assumption, we extract features using the
MSER detector suggested in [19].

3.4. Feature sampling
If the number of detected features is large, the time

complexity of the system is increased. Therefore, rather
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(a) (b) (c)

Fig. 2. An example of sampling (S = 100). (a) The de-
tected whole features. (b) The samples using ran-
dom sampling. (c) The samples using density-
based sampling.

than using the whole extracted features, we utilize sam-
ples of features. Samples should represent a population
of detected features without bias. One possible way of
sampling is random sampling [33]. The random sampling
samples each individual that has same probability of be-
ing chosen during the sampling process. It easily samples
without any prior knowledge of the distribution of the pop-
ulation.

Even though random sampling has its own advantages,
we can consider the distribution of the features if we know
that in advance. Such sampling is possible to consider lo-
cal density of features. It can be proceeded as follows.
First, the distribution of features is estimated by multi
variate kernel density estimation [34] according to the lo-
cation of features. In this case, we use the Epanechnikov
distribution [35] as the kernel to estimate density, which
is known as the optimal distribution in terms of mean
squared error. We use an approximate mean squared error
to estimate the optimal bandwidth for density estimation.

Let f (x) is the distribution of features estimated by
multi-variate kernel density estimation. The sampling con-
sidering f (x) distribution can be performed similar to Re-
jection sampling [36]. For this purpose, f (x) is divided by
the largest value in f (x) for normalization as follows:

f ′(x) =
f (x)

max( f (x))
, (2)

where f ′(x) is the normalized distribution of the f (x). For
a random sample of a feature X , the sample is accepted
if u < f ′(x = X) where the u is a value sampled from
uniform distribution U(0,1). Otherwise, the sample is re-
jected. The sampling of this process is continued until the
total number of the accepted samples become S.

The samples of features by using random sampling and
using the density-based sampling are shown in Fig. 2(c).
In Section 4.2, the experimental results will show the
performance comparison between random sampling and
density-based sampling.

3.5. Direct ranking by geometric verification
The speed of the quantization using samples of features

is T/S times faster than the one using the whole features

where T is the number of whole features and S is the num-
ber of samples of features. The smaller the number of
S, the faster the speed of the system. However, the scor-
ing process using samples by the conventional TF-IDF
method may be inaccurate because the samples has lim-
ited information in comparison with the all features. For-
tunately, we can directly calculate each of scores using
spatial information. It is possible by the fact that sampling
of features can speed up the process. This direct ranking
method using spatial information is robust to the matching
of large viewpoint movement owing to ranking using ge-
ometry information. Hence, we can compensate the effect
of utilizing small number of features.

The direct ranking method is done by performing the
geometric verification [37], and it is performed by calcu-
lating the Fundamental matrix [38] between a query image
and a target image in database. It means that the geometric
verification checks the relation of epipolar geometry be-
cause if the target image is true positive, the camera pose
between the query image and the target image is related
by rigid body transformation.

Therefore, to check this, we first find the corresponding
pair points of samples between a query image and target
image. The location information of them can be easily
taken from the indices of the quantized inverted files. We
use Lo-RANSAC [39] to calculate the fundamental ma-
trix. To reduce the time complexity to calculate the fun-
damental matrix, duplicated matching pairs are removed
and a local affine frame check suggested in [18] is per-
formed to remove the outlier matching pairs. The samples
of a query image are mapped to a target image using the
fundamental matrix.

Finally, the distance error on Euclidean space between
the mapped samples and the corresponding samples of tar-
get image is calculated as a score. For all target image
in database, all the scores after performing the geometric
verification is sorted by the ascending order to place an
image having lower sum of distance error on the top in the
ranking list.

Even if we use S samples in a query image, the number
of corresponding pairs is different from each of images
in database. To normalize the number of corresponding
pairs, we normalize the corresponding pairs number Mx

to 100 (i.e., Mx∗100/Mx = 100, where x ∈ images in
database). Therefore, we get the scores about target image
x as follows:

score(x)=dx∗
100
Mx

, (3)

where dx is the un-normalized distance error of the image
x. Note that this scoring step is performed only for the
images in Mx > M where M is the threshold for the num-
ber of matching pairs. This strategy improves the speed of
ranking procedure. After sorting the scores, only the top
N items are stored in the shortlist L.
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3.6. Ranking refinement
The loss of information caused by utilizing samples of

features is further compensated by the supplement of addi-
tional samples under the Law of large numbers [24]. The
first method for the supplement is to increase the num-
ber of samples itself. However, this eventually takes lots
of time to compute the fundamental matrix for geometric
verification in the RANSAC-like method. Secondly, we
can sample repeatedly to support the samples in the same
query image updating the probability distribution of score
more precisely. This can improve accuracy. Therefore,
we use the refinement method that the ranking of score
updates using the coarse-fine based iterative method.

Since the estimated density of probability distribution
of scores have Multi-modes, we update that the high mode
be higher, and the low mode be lower in each iteration.
To do this, we repeatedly perform image retrieval in the
same query image and multiply the estimated density to
the previous one. Eventually, it will converge to τ modes
that stand out, and then re-scores the found modes by the
each of probability values.

The implementation steps of this method are as follows.
First, given the score(x), we need to convert score(x) to
probability distribution by normalization. Because the
score(x) is sorted by ascending order, we make a proba-
bility distribution p(x) by applying the inverse of score(x)
so that the smaller score values have higher probability
values as:

p(x) =
1
Z
· 1

score(x)
, x∈images in database, (4)

where Z is a partition function that allows the sum of p(x)
to be 1. Then, the probability distribution p(x) is con-
volved with a Gaussian filter g(x) with a standard devia-
tion of σ to estimate the probability distribution q(x) as
follows:

q(x) = (p∗g)(x), (5)

where ∗ is a convolution operator. The reason for oper-
ating the convolution is to increase the probability among
adjacent images. If the adjacent images are existed in the
shortlist, the possibility of that the one of images is the true
positive image increases because the images in database
are sequentially made by SLAM system.

The next step is the updating step. Let the k is the num-
ber of iterations. The qk(x) indicates the probability dis-
tribution of a query image in each iteration k. When k is 0
as initial iteration, from next iteration each iteration mul-
tiplies the output probability distribution in k-th execution
to the output probability distribution in (k−1)-th iteration.
Thus, the equation of updating probability distribution for
each iteration is following as:

Q0(x) = q0(x),
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𝑝(𝑥) =
1

Z
∙

1

𝑠𝑐𝑜𝑟𝑒(𝑥)
, 𝑥 ∈ images in database, (4) 

where Z is a partition function that allows the sum of 𝑝(x)

to be 1. Then, the probability distribution p(x) is 

convolved with a Gaussian filter g(x) with a standard 

deviation of σ to estimate the probability distribution q(x)

as follow:

𝑞(𝑥) = (𝑝 ∗ g)(𝑥), (5) 

where * is a convolution operator. The reason for 

operating the convolution is to increase the probability 

among adjacent images. If the adjacent images are 

existed in the shortlist, the possibility of that the one of 

images is the true positive image increases because the

images in database are sequentially made by SLAM

system.

The next step is the updating step. Let the k is the

number of iterations. The 𝑞𝑘(x) indicates the probability

distribution of a query image in each iteration k. When k 

is 0 as initial iteration, from next iteration each iteration 

multiplies the output probability distribution in k-th 

execution to the output probability distribution in (k-1)-th 

iteration. Thus, the equation of updating probability

distribution for each iteration is following as: 

Q0(𝑥) = 𝑞0(𝑥), 

Q1(𝑥|𝑞1, Q0) =
1

Z
∙ 𝑞1(𝑥)Q0(𝑥), 

⋮ 

Q𝑘(𝑥|𝑞𝑘 , Q𝑘−1) =
1

Z
∙ 𝑞𝑘(𝑥)Qk−1(𝑥), (6) 

≈ Q𝑘(𝑥|𝑞𝑘 , 𝑞𝑘−1 ⋯ 𝑞0) =
1

Z
∙ ∏ 𝑞i(𝑥)

𝑘

i=0

, (7) 

where 𝑥 ∈images in database,∀𝑥 ∈ Q𝑘−1(𝑥) > 0. The 

Qi (i = 0 … 𝑘) is a probability distribution for the final 

score at each iteration, and Z is a partition function that

allows the sum of Qi (x) to be 1. At this time, the

update process in each execution is very quick because it 

is only performed for all images x ∈ Q𝑘−1(𝑥) > 0. The

mode can be counted where Q𝑘(𝑥 − 1) and Q𝑘(𝑥 + 1) 

being smaller than Qk(𝑥) . This updating procedure 

repeats until the number of modes becomes less than τ. 

The final image is detected by the highest probability

value among the detected τ images. An example of the

iterative refinement is shown as Figure 3. As iteration is 

repeated, we can see that the probability distribution is 

updated as the elaborate modes to the true positive image.

4. EXPERIMENAL RESULTS

4.1. Environment setup

We implemented the proposed system on i-7 CPU and

8G ram with C++. We only used one thread in all the

experiments. They were generated for two descriptors,

HR-SIFT and R-SIFT. They were learned by AKM [4] 

and quantized into a randomized k-d tree. The parameter 

setting for the synthesis view generation was as follows: 

{s} = {1; 0.25; 0.125}, {t} = {1; 3; 6; 9} and Δ 𝜙 = 

360 ° / t. Each syntheses view was created several times

by the above parameters. We set parameters empirically 

τ=3 for the final candidate images and N = 100 for the

shortlist. We used Gaussian filter for the convolution in 

refinement method with 1×5 normal distribution Ν(0,1). 

Prior to the experiments, we defined the recall, 

precision, localization rate and detection rate similar to 

[28, 4]. Each measurement means that the recall is a 

measurement of the likelihood of a true positive image in 

the shortlist. The precision is a measurement of the 

likelihood how many the true positive image in the

shortlist is top 1, and the localization rate is a 

measurement of detecting the true positive image as the

top 1 from whole retrieval. Thus, the important thing is 

to find high localization rate. The detection rate means

that how many the true positive image is detected even it 

is not in shortlist.

We tested the proposed method on the dataset 

VPRiCE(Visual Place Recognition in Changing

Environments) [37] and a self-collected Campus dataset. 

The VPRiCE dataset consists of various images captured 

from a variety of vehicles such as trains, cars, buses,

bicycles, pedestrians with different environments such as 

viewpoint change, occlusion, and illumination changes 

like day-night time change or seasonal change. This

dataset is divided into two datasets, memory with 3756

images for database and live with 4022 images for 

queries. We created visual vocabularies using all images 

in VPRiCE, and categorized the images in both live and

memory dataset according to the used vehicles with 

descriptions in Table 2. For the experiments, we selected 

56 images in the proportion of the number of images 

according to the categories in live dataset. Campus 

dataset is composed of 12K images that have 

illumination changes, occlusions, viewpoint changes, and

season changes. These images are taken from video by 

hand-held and are divided into several different

situations such as 1 p.m., 5 p.m., fog, rain from summer, 

and 10 a.m., night from winter. We compare the

proposed BoW models with existing BoW model using 

this dataset in Section 4.6. 

Since the ground truth for each query image is not 

provided, the most similar ones are indexed and used as 

the ground truth. If the index of the searched image is 

equal to the ground truth, we labelled OK. If it is not the 

same place but similar to the ground truth image, we

labelled Good. If there is no overlapping space with non-

similarity, we labelled Bad. Only the images detected as 

Fig. 3. An example of results of suggested refinement 

method. The * is the true positive image. 
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Fig. 3. An example of results of suggested refinement
method. The ∗ is the true positive image.

Q1(x | q1,Q0) =
1
Z
·q1(x)Q0(x),

...

Qk(x | qk,Qk−1) =
1
Z
·qk(x)Qk−1(x), (6)

≈ Qk(x | qk,qk−1, · · · ,q0) =
1
Z
·

k

∏
i=0

qi(x), (7)

where x ∈images in database, ∀x ∈ Qk−1(x) > 0. The Qi

(i = 0, ..., k) is a probability distribution for the final score
at each iteration, and Z is a partition function that allows
the sum of Qi(x) to be 1. At this time, the update pro-
cess in each execution is very quick because it is only per-
formed for all images x ∈ Qk−1(x) > 0. The mode can be
counted where Qk(x−1) and Qk(x+1) being smaller than
Qk(x). This updating procedure repeats until the number
of modes becomes less than τ . The final image is detected
by the highest probability value among the detected τ im-
ages. An example of the iterative refinement is shown as
Fig. 3. As iteration is repeated, we can see that the proba-
bility distribution is updated as the elaborate modes to the
true positive image.

4. EXPERIMENAL RESULTS

4.1. Environment setup
We implemented the proposed system on i-7 CPU and

8G ram with C++. We only used one thread in all the
experiments. They were generated for two descriptors,
HR-SIFT and R-SIFT. They were learned by AKM [5]
and quantized into a randomized k-d tree. The parame-
ter setting for the synthesis view generation was as fol-
lows: {s} = {1; 0.25; 0.125}, {t} = {1; 3; 6; 9} and
∆ϕ = 360◦/t. Each syntheses view was created several
times by the above parameters. We set parameters empir-
ically τ = 3 for the final candidate images and N = 100
for the shortlist. We used Gaussian filter for the convolu-
tion in refinement method with 1× 5 normal distribution
N(0,1).

Prior to the experiments, we defined the recall, preci-
sion, localization rate and detection rate similar to [5, 40]
as shown in Table 1. Each measurement means that the
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Table 1. Types of measurements.

Recall
the number of query images at least one in the shortlist

the number of query images

Precision
the number of query images at the top 1

the number of query images at least one in the shortlist

Localization
the number of query images at the top 1

the number of query images

Detection rate
the number of query images whose the number of matching pairs larger than M

the number of query images

(a) 1 p.m. (b) 5 p.m. (c) fog. (d) rain. (e) 10 a.m.-winter. (f) night-winter.

Fig. 4. Self-collected dataset of campus. This dataset is composed of a variety of illumination changes, occlusions,
viewpoint changes, and season changes.

recall is a measurement of the likelihood of a true positive
image in the shortlist. The precision is a measurement
of the likelihood how many the true positive image in the
shortlist is top 1, and the localization rate is a measure-
ment of detecting the true positive image as the top 1 from
whole retrieval. Thus, the important thing is to find high
localization rate. The detection rate means that how many
the true positive image is detected even it is not in short-
list.

We tested the proposed method on the dataset
VPRiCE(Visual Place Recognition in Changing Envi-
ronments) [30] and a self-collected Campus dataset. The
VPRiCE dataset consists of various images captured from
a variety of vehicles such as trains, cars, buses, bicycles,
pedestrians with different environments such as view-
point change, occlusion, and illumination changes like
day-night time change or seasonal change. This dataset is
divided into two datasets, memory with 3756 images for
database and live with 4022 images for queries. We cre-
ated visual vocabularies using all images in VPRiCE, and
categorized the images in both live and memory dataset
according to the used vehicles with descriptions in Ta-
ble 2. For the experiments, we selected 56 images in the
proportion of the number of images according to the cat-
egories in live dataset. Campus dataset is composed of
12K images that have illumination changes, occlusions,
viewpoint changes, and season changes. These images
are taken from video by hand-held and are divided into
several different situations such as 1 p.m., 5 p.m., fog, rain
from summer, and 10 a.m., night from winter as shown
in Fig. 4. We compare the proposed BoW models with
existing BoW model using this dataset in Section 4.6.

Since the ground truth for each query image is not pro-

vided, the most similar ones are indexed and used as the
ground truth. If the index of the searched image is equal to
the ground truth, we labelled OK. If it is not the same place
but similar to the ground truth image, we labelled Good.
If there is no overlapping space with non-similarity, we
labelled Bad. Only the images detected as OK are recog-
nized as true positive image, and the recall, precision and
localization rate are calculated by using this. We searched
all the images in the memory dataset and recorded the re-
sults for each of categories in the each of experiments.

4.2. Comparison of sampling methods
We compared the performances between random sam-

pling and density-based sampling. The test was performed
on 10K vocabularies and S = 100 samples from VPRiCE.
We calculated the mean and standard deviation of the
number of matching pairs in each category with detection
rate. The results are shown in Table 3.

The experimental results show that the density-based
sampling is lower than the random sampling in terms of
the number of matching pairs. However, the detection
rate is higher. This means that the density-based sam-
pling detects more samples which reflects the character-
istics of each image (distribution of the features) without
duplication. Therefore, it has fewer matching with nega-
tive images and higher matching with true positive images.
However, high detection rate does not guarantee high pre-
cision and localization rate. In fact, precision and localiza-
tion rate is more affected by the threshold M which is the
threshold for the number of matching pairs than detection
rate. Therefore, we compared precision and localization
rate with respect to M in Section 4.4 by using both sam-
pling methods.
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Table 2. Descriptions regarding categories for the datasets.

Category An example in live
dataset

An example in
memory dataset description

Catagory 1

â These pictures are taken from trains.
â Nature environments with few or no buildings.
â Large illumination change, low viewpoint change, few
occlusions and few appearance changes.

Catagory 2

â These pictures are taken from pedestrians.
â Many buildings with few or no nature environments.
â Little illumination change, low viewpoint change, some
occlusions and few appearance changes.

Catagory 3

â These pictures are taken from cars.
â Few buildings with some nature environments.
â Large illumination change, middle viewpoint change,
few occlusions and middle appearance change.

Catagory 4

â These pictures are taken from buses.
â Many nature environments with few buildings.
â Little illumination change, large viewpoint change,
many occlusions and large appearance change.

Catagory 5

â These pictures are IR (infrared) image taken from bikes.
â Some nature environments with few buildings.
â Large illumination change, large viewpoint change, few
occlusions and little appearance change.

Table 3. Comparison of sampling methods.

Density-based sampling Random sampling
Number of matching pairs Detection rate Number of matching pairs Detection rate

Category 1 52±14 0.467 58±20 0.533
Category 2 47±11 1.000 55±10 0.916
Category 3 68±20 1.000 78±26 0.857
Category 4 69±45 0.778 69±27 0.778
Category 5 61±43 0.538 98±38 0.308

4.3. Comparison of number of vocabularies

In general, BoW model utilizes 1M vocabularies. How-
ever, since we propose a new BoW model (i.e., BoSW
model), we need to find the proper number of vocabu-
laries. For this purpose, we calculated the quantization
speed (q. s.), the searching speed (s. s.), recall, precision,
and localization rate with respect to the number of vocab-
ularies, 10K,100K, 1M. The quantization speed indicates
the speed of quantization step, and the searching speed in-
dicates the speed of ranking step. We used 100 samples
for this experiment. At this time, we only used the R-
SIFT descriptor and 1252 images in the memory dataset
of VPRiCE by skipping the index of the image by three.
Since the proposed system is influenced by the threshold
M, we set the M for 10K to 30, for 100K to 10, for 1M
to 1. The reason why the larger the number of the vocab-
ularies, the smaller M is because the quantized represen-
tation of samples using the larger vocabularies is going to

be sparser.
The experimental results are shown in Table 4. In Ta-

ble 4, the first row indicates the number of vocabularies
and the threshold M in parentheses. The experimental re-
sults show that the smaller the number of vocabularies, the
faster the quantization speed of the samples. In addition,
there is a tendency that the larger number of vocabularies
has the more precise precision with high searching speed.
However, the recall is low. Even though the precision and
localization rate are important, we select 10K as the proper
number of vocabularies because we can increase the pre-
cision and localization rate if the recall is high. In Table 4,
10K slots have larger recall than others do where the blank
means that it detects nothing.

4.4. Parameter testing

In this part, we tested the performance of the pro-
posed system depending on the number of samples and the
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Table 4. Comparison of the number of vocabularies.

10K (50) 100K (10) 1M (1)
DB q. s. s. s. Rec. Prec. Loc. q. s. s. s. Rec. Prec. Loc. q. s. s. s. Rec. Prec. Loc.

Catagory 1 0.50
±0.01

1.36
±1.64

0.267 0.750 0.200 8.43
±0.17

0.74
±0.70

0.267 1.000 0.267 134.11
±7.07

0.26
±0.04

0.133 1.000 0.133

Catagory 2 0.53
±0.06

1.90
±3.54

0.667 0.200 0.300 8.48
±0.36

0.48
±0.45

0.750 0.778 0.583 153.98
±23.21

0.43
±0.50

0.333 1.000 0.333

Catagory 3 0.51
±0.01

11.64
±10.90

0.429 0.000 0.000 8.63 0.38 0.143 1.000 0.143

Catagory 4 0.52
±0.02

12.75
±8.04

0.556 0.000 0.000

Table 5. Comparison between the number of samples and threshold of matching pairs of random sampling method.

DB Method f. q. s. s. s. Rec. Prec. Loc. #sample threshold

Catagory 1 Ref. 3.77
± 1.56

9.19
± 15.22

0.40 1.00 0.40 100 50

Catagory 2 Ref. 17.40
± 12.47

34.46
± 18.56

0.75 1.00 0.75 150 50

Catagory 3 Ref. 9.45
± 9.23

54.64
± 7.42

0.43 1.00 0.43 150 50

Catagory 4 Ref. .35
± 4.61

16.47
± 14.40

48.24
± 17.13

0.44 1.00 150 60

Catagory 5 - - - - - - - -

Table 6. Comparison between the number of samples and threshold of matching pairs of density-based sampling method.

DB Method f. q. s. s. s. Rec. Prec. Loc. sample threshold

Catagory 1 Ref. 5.87
± 3.28

18.66
± 24.04

0.33 1.00 0.33 150 60

Catagory 2 Ref. 14.87
± 10.73

32.09
± 20.67

0.75 1.00 0.75 150 50

Catagory 3 Ref. 6.20
± 4.59

16.69
± 21.85

0.71 0.80 0.57 100 50

Catagory 4 Ref. .35
± 4.61

45.00
± 17.66

0.33 0.67 0.22 150 60

Catagory 5 - - - - - - - -

threshold M. For this purpose, we used 56 live images in
VPRiCE as query images using HR-SIFT and R-SIFT de-
scriptors with 10K vocabularies for 3756 memory dataset
images. The threshold M was set to {30, 40, 50, 60, 70,
80, 90, 100} and the number of samples S was set to {50,
100, 150, 200, 250, 300}. Table 5 and Table 6 show the
best results of parameter testing as we changed the number
of samples and the threshold M with respect to the random
sampling and density-based sampling. Note that f. q. s.
is the speed of feature extraction and quantization, No. is
the method that the proposed refinement is not performed,
and ref. is the method that the refinement is performed.

We also measured the time and accuracy for each cat-
egory among those combinations between S and M. The
unit of time is second and the average and variance of the
time is calculated for each category. At this time, we stop
image searching when the sum of f. q. s. and s. s. ex-
ceed 60 seconds and recognize that the query image is not

found. The bold-type indicates best result.
In the experimental results, the combinations of using

100, 150 samples and setting the threshold value as 50, 60
were the best for both sampling methods in terms of local-
ization rate. Therefore, we chose the combination of 150
samples and threshold value as 50 for random sampling,
and 150 samples and threshold value as 60 for density-
based sampling. We compared the proposed methods us-
ing these combinations with other methods in Section 4.5
and Section 4.6.

4.5. Comparisons on campus dataset
Next, we compared the proposed BoSW model with ex-

isting BoW model on campus dataset. Here, we tried to
verify the improvement of existing method using the pro-
posed system in terms of accuracy. Hence, we built the
proposed model on top of the modified existing method,
and the descriptor HRSIFT and RSIFT were equally used.
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Table 7. Comparison with existing methods on capmus
dataset.

BoSW + d.s. + ref. with 150 samples and 50 threshold

DB
Quary 1 p.m. 5 p.m. Fog Rain 10 a.m. night

1 p.m. - 0.33 0.33 0.47 0.33 0.07
5 p.m. 0.40 - 0.33 0.47 0.20 0.20
Fog 0.40 0.33 - 0.47 0.20 0.07
Rain 0.20 0.27 0.27 - 0.20 0.20

10 a.m. 0.27 0.33 0.27 0.13 - 0.20
night 0.20 0.20 0.13 0.13 0.20 -

BoW

Quary
DB 1 p.m. 5 p.m. Fog Rain 10 a.m. night

1 p.m. - 0.33 0.13 0.47 0.27 0.07
5 p.m. 0.47 - 0.13 0.40 0.27 0.00
Fog 0.33 0.13 - 0.53 0.13 0.07
Rain 0.20 0.20 0.27 - 0.20 0.00

10 a.m. 0.13 0.27 0.13 0.07 - 0.00
night 0.00 0.07 0.13 0.13 0.07 -

We modified the existing method by using 10K vocabu-
lary and only MSER detector for efficient experiments. It
is because it required too many computing powers if ex-
periments were performed on 1M vocabulary and MSER
with Hessian as it was suggested. For the experiment, we
manually selected 10 landmarks in each situation, and per-
formed image retrieval for all situations.

The experimental results are shown in Table 7. In Ta-
ble 7, BoW refers to the method that uses just TF-IDF
scoring of existing method [7], and BoSW + d.s. + ref.
refers to the proposed method with density-based sam-
pling and refinement. Using BoSW+d.s.+ref. with 150
samples and 50 as threshold value, we compared local-
ization rate with BoW model. In most cases, localiza-
tion rate in the proposed method outperforms the existing
BoW model. Therefore, we can conclude that the pro-
posed method can improve the performance of the existing
BoW model.

4.6. Comparison with existing methods on VPRiCE
Here, we compared the proposed BoSW model with ex-

isting method using BoW model suggested in [14], and
VLAD model suggested in [16]. The experimental results
are shown in Table 8. In the Table 8, BoW + rerank. refers
to the application of the re-ranking process after TF-IDF
scoring. BoSW + r.s. refers to the proposed model using
random sampling only, and applying refinement is BoSW
+ r.s. + ref. refers to the proposed model using random
sampling and refinement. and BoSW + d.s. refers to the
proposed model using density-based sampling without re-
finement, and BoSW + d.s.+ ref. refers to the proposed
model using density-based sampling without refinement.

Table 8. Comparison with existing methods on VPRiCE
dataset.

f.q.s s.s Rec. Prec. Loc.
Method Catagory 1

BoW 20.35
± 1.72

2.65
± 0.29 0.73 0.36 0.27

BoW+rerank 20.82
± 2.01

192.85
± 20.32 0.67 0.30 0.20

BoSW+r.s. 2.81
± 0.17

35.37
± 18.72 0.40 0.67 0.26

BoSW+r.s.+ref. 12.2
± 12.44

45.15
± 15.69 0.40 0.83 0.33

BoSW+d.s. 2.63
± 0.16

14.81
± 15.69 0.33 1.00 0.33

BoSW +d.s.+ref. 5.87
± 3.28

18.66
± 24.04 0.4 1.00 0.40

VLAD [16] 0.9 0.17 0.6 0.67 0.40
Catagory 2

BoW 21.36
± 3.59

2.41
± 0.25 1.00 0.75 0.75

BoW+rerank 21.36
± 3.59

189.23
± 52.64 0.92 0.73 0.67

BoSW+r.s. 2.97
± 0.17

22.27
± 20.73 0.75 0.56 0.42

BoSW+r.s.+ref. 17.40
± 12.47

34.46
± 18.56 0.75 1.00 0.75

BoSW+d.s. 2.55
± 0.27

15.16
± 19.66 0.92 0.55 0.50

BoSW +d.s.+ref. 5.77
± 3.47

17.96
± 21.32 0.83 0.80 0.67

VLAD [16] 1.2 0.18 1.00 0.75 0.75
Catagory 3

BoW 22.36
± 2.64

2.74
± 0.30 1.00 0.00 0.00

BoW+rerank 24.50
± 2.74

224.05
± 27.32 1.00 0.29 0.29

BoSW+r.s. 3.02
± 0.30

41.27
± 22.2 0.43 0.00 0.00

BoSW+r.s.+ref. 9.45
± 9.23

54.64
± 7.42 0.43 1.00 0.43

BoSW+d.s. 2.66
± 0.19

22.68
± 19.29 0.71 0.40 0.29

BoSW +d.s.+ref. 7.18
± 7.27

30.91
± 21.53 0.71 0.60 0.43

VLAD [16] 1.1 0.17 0.86 0.50 0.43
Catagory 4

BoW 22.54
± 2.34

2.88
± 0.39 0.56 0.00 0.00

BoW+rerank 22.82
± 2.12

237.16
± 21.07 0.56 0.20 0.11

BoSW+r.s. 2.81
± 0.16

45.95
± 18.45 0.22 0.50 0.11

BoSW+r.s.+ref. 5.39
± 3.39

52.88
± 12.88 0.22 0.50 0.11

BoSW+d.s. 2.66
± 0.15

28.64
± 16.15 0.44 0.25 0.11

BoSW +d.s.+ref. 7.35
± 4.61

45.00
± 17.66 0.33 0.67 0.22

VLAD [16] 0.9 0.17 0.56 0.60 0.33
Catagory 5

BoW 21.23
± 1.58

2.60
± 0.20 0.23 0.00 0.00

BoW+rerank 26.07
± 7.17

248.18
± 41.78 0.23 0.00 0.00

BoSW+r.s. 2.86
± 0.19

50.03
± 18.56 0.08 0.00 0.00

BoSW+r.s.+ref. 5.98
± 6.25

53.99
± 11.12 0.00 0.00 0.00

BoSW+d.s. 2.70
± 0.28

42.05
± 21.20 0.15 0.00 0.00

BoSW +d.s.+ref. 3.47
± 2.08

24.43
± 20.62 0.15 0.00 0.00

VLAD [16] 0.87 0.17 0.00 0.00 0.00
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(a) Test results of the proposed BoSW model on campus dataset 

 

 
(b) Test results of the proposed BoSW model on campus VPRiCE dataset 

Fig. 6. The examples of results of the proposed BoSW method for place recognition in the challenging 
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searched images on database. 
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Each method used best parameters found in Section 4.4.
And bold-type indicates the best value, and underline de-
notes the second best value.

In terms of the speed, the proposed methods show 10
times improvement of quantization speed of existing BoW
model. The searching speed is usually faster than exist-
ing method that uses re-ranking procedure. We also ex-
press the speed of systems graphically for more intu-
itive comparison in Fig. 5. Fig. 5(a) is a cumulative his-
togram comparing features extraction and quantization
speed. Fig. 5(b) is a cumulative histogram of the searching
speed, and Fig. 5(c) is a cumulative histogram of the total
time. As the results, the proposed method was the fastest
in quantization speed. Searching time and total time are
slower than BoW method, but much faster than BoW +
rerank. method. It means that the BoW + rerank. is con-
stantly slow because that uses re-ranking step, but the pro-
posed method is fast even we rank using the robust ranking
method. At the quantization speed, the method using re-
finement takes longer than non-refinement method. This
is because it performs quantization repeatedly. However,
since the quantization speed itself is fast, the repetition is
faster than the BoW + rerank. method.

In terms of accuracy, the proposed method is the best
on precision rate in most cases. VLAD is the best on lo-
calization rate, but the proposed method is also the best or
the second best. The reason why the localization rate of
VLAD method is more accurate than the proposed meth-
ods’ one is that the recall of VLAD is higher than the pro-
posed methods’ recall. The higher recall, the more candi-
dates for localization be detected.

4.7. Discussion
The examples of the proposed method in challenging

environments changes are as shown in Fig. 6. In the com-
parisons in Section 4.5 and Section 4.6, we can see the
proposed method outperforms the existing BoW model in
terms of speed and accuracy. The proposed method also
shows similar performance on VLAD-based method. The
proposed method is needed to improve recall: since the

proposed methods have the best precision, the localization
rate will be also increased if recall is increased.

Even though the proposed BoSW reduced the compu-
tation time for place recognition, it still needs improve-
ment for real-time operation. An alternative way to im-
port the proposed system to Visual SLAM system is to
utilize it as a time-free additional module that is used for
map alignment between online and offline map in chang-
ing environments. The module detects same place where
the environments are significantly changed with matching
pairs, and 3D similarity between two maps is calculated
by using matching pairs. Then, two maps are aligned by
the 3D similarity, and the visual odometry is conducted on
the aligned map. Therefore, this module functions as the
module which enables localization and mapping in chang-
ing environments, and it may be operated one or just sev-
eral times that is not necessary to be real-time module.

5. CONCLUSION

In this paper, we present a new strategy to improve Bag
of Words (BoW) model for visual place recognition. In-
stead of utilizing all extracted features, the proposed strat-
egy utilizes sampled features only for place recognition.
Since processing sampled features is faster than process-
ing the full features, it is possible to perform the geometric
verification-based ranking process which is slow, yet more
robust to the geometric structure of the image considering
spatial information. In addition, we update the ranking
list with the proposed fast and iterative refinement for the
accurate detection of true positive images in ranking list.
Experimental results show that the proposed BoSW model
is faster and more accurate than the existing BoW models.

As future works, we will investigate how to integrate
the proposed strategy to other models such as the VLAD
model. We will also study how to apply the proposed
model to visual SLAM as a place recognition module
for map alignment between off-line and on-line maps on
changing environments.
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Fig. 6. The examples of results of the proposed BoSW method for place recognition in the challenging 

environments changes. The first row of each dataset is used for query images, and the second row is 

searched images on database. 
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Fig. 6. The examples of results of the proposed BoSW method for place recognition in the challenging environments
changes. The first row of each dataset is used for query images, and the second row is searched images on
database.
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